Đáp án B
Ta có
π = 2 πr h + r ⇒ h = 1 2 r - r ⇒ V = πr 2 h = π r 2 - r 3 = f r ⇒ f ' r = π 1 2 - 3 r 2 = 0 ⇒ r = 1 6 ⇒ h = 6 3 .
Đáp án B
Ta có
π = 2 πr h + r ⇒ h = 1 2 r - r ⇒ V = πr 2 h = π r 2 - r 3 = f r ⇒ f ' r = π 1 2 - 3 r 2 = 0 ⇒ r = 1 6 ⇒ h = 6 3 .
Trong các khối trụ có cùng diện tích toàn phần bằng π , gọi (T) là khối trụ có thể tích lớn nhất, chiều cao của (T)bằng
A. 3 4
B. 6 3
C. 6 6
D. π 3 4
Cho hình trụ có diện tích toàn phần là 4 π và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Thể tích khối trụ đã cho bằng
A. 4 π 6 9
B. π 6 12
C. π 6 9
D. 4 π 9
Một khối trụ có thể tích bằng 25 π . Nếu chiều cao khối trụ tăng lên năm lần và giữ nguyên bán kính đáy thì khối trụ mới có diện tích xung quanh bằng 25. Bán kính đáy của khối trụ ban đầu là:
A. r = 10
B. r = 5
C. r = 2
D. r = 15
Cho hình trụ có diện tích xung quanh bằng 4 π , thiết diện qua trục là hình vuông. Tính thể tích V của khối trụ giới hạn bởi hình trụ
A. V = 2 π
B. V = 6 π
C. V = 3 π
D. V = 5 π
Trong tất cả các khối trụ có cùng thể tích bằng 16 π , tính diện tích xung quanh của khối trụ có diện tích toàn phần nhỏ nhất.
16 π
B. 24 π
C. 8 π
D. 32 π
Trong các khối trụ cùng có diện tích toàn phần là 6 π . Tìm bán kính đáy của khối trụ có thể tích lớn nhất
A. R = 1
B. R = 1 3
C. R = 1 3
D. R = 3
Lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A, BC = 2a , cạnh bên AA' = 3a và có hai đáy là hai tam giác nội tiếp hai đường tròn đáy của hình trụ τ . Tính thể tích khối trụ τ .
A. π a 3
B. 3 π a 3
C. 3 3 π a 3
D. 4 π a 3
Trong các khối trụ có cùng thể tích, khối trụ có chiều cao h và bán kính đáy R thỏa mãn điều kiện nào sau đây thì có diện tích toàn phần nhỏ nhất?
A. h = 3R
B. h = 2R
C. R = 2h
D. R = 3h
Cho khối trụ có chiều cao h = 3 và diện tích toàn phần bằng 20 π . Khi đó chu vi đáy của khối trụ là
A. 2 π
B. 4 π
C. 6 π
D. 8 π