Đáp án C
Ta có: 3 + 1 > 1 do đó π < 7 ⇒ log 3 + 1 π < log 3 + 1 7 .
Đáp án C
Ta có: 3 + 1 > 1 do đó π < 7 ⇒ log 3 + 1 π < log 3 + 1 7 .
Cho x ϵ (0;π/2). Biết log(sinx)+log(cosx)=-1 và log(sinx+cosx)=1/2(logn-1). Giá trị của n là
A. 11.
B. 12.
C. 10.
D. 15.
rút gọn biểu thức sau
\(\left(log_a^b+log^a_b+2\right)\left(log_a^b-log^a_{ba}\right)log^a_b-1\)
tính giá trị của các biểu thức sau
\(2^{2\log^5_2}.2^{log^9_{\frac{1}{2}}}\)
so sánh \(log^3_{3+2\sqrt{2}}\) và \(log^{\frac{1}{2}}_{5\sqrt{2}-7}\)
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Tính giá trị của biểu thức P = l o g ( t a n 1 ∘ ) + l o g ( t a n 2 ∘ ) + . . . + l o g ( t a n 89 ∘ )
A. 0
B. 2
C. 1/2
D. 1
Cho log 2 = a , log 3 = b . Biểu diễn log 625 270 theo a và b là:
A. 1 4 3 b + 1 1 - a
B. a + 2 b 2 3 a 1 - b
C. a + b 2 4 a 1 - b
D. a + b 2 2 a 1 - b
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho x, y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x
A. 6
B. 31 5
C. 32 5
D. 39 5