Cho (O;R) , M là điểm nằm ngoài (O) sao cho OM = 2R . Từ M kẻ 2 tiếp tuyến MA và MB với đường tròn tại A và B . cmr : Tam giác MAB đều; b) Gọi C là giao điểm của MO với (O). Tính diện tích tứ giác AOBC. c) Qua O kẻ đường thẳng vuông góc với AO cắt BM tại D. CMR: DC là tiếp tuyến của (O)
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Cho (O;R) , M là điểm nằm ngoài (O) sao cho OM = 2R . Từ M kẻ 2 tiếp tuyến MA và MB với đường tròn tại A và B . cmr : Tam giác MAB đều
Cho đường tròn (O) bán kính R và điểm M nằm ngoài đường tròn sao cho OM=2R. Qua M vẽ 2 tiếp tuyến MA, MB với đường tròn OM cắt AB tại H. a, Chứng minh OM vuông góc AB b, Chứng minh tam giác MAB là tam giác đều c, Qua điểm P bất kì thuộc cung nhỏ AB, vẻ tiếp tuyển thứ 3 cắt MA, BM lần lượt tại C,D. Tính chu vi tam giác MCD theo R. d, Tính số đo góc COD.
Giúp mình giải với ạ, mình cảm ơn nhiều.
cho đường tròn ( O,R). M LÀ MỘT ĐIỂM SAO CHO OM=2R. TỪ M KẺ HAI TIẾP TUYẾN MA, MB VỚI(O) ( TRONG ĐÓ A.B LÀ CÁC TIẾP ĐIỂM, A KHÁC B)
a) TÍNH MA THEO R
b) CHỨNG MINH TAM GIÁC ABM LÀ TAM GIÁC ĐỀU
c) GỌI N LÀ ĐIỂM THUỘC CUNG NHỎ AB. QUA N KẺ TIẾP TUYẾN VỚI (O), NÓ CẮT CÁC TIẾP TUYẾN Ax, By THEO THỨ TỰ TẠI C VÀ D. TÍNH TỈ SỐ CHU VI CỦA HAI TAM GIÁC MCD VÀ MAB
Cho đường tròn (O,R) cố định.Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm).Gọi H là giao điểm của OM,AB
a) CM: OM vuông góc với AB và OH.OM=R2
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P),gọi I là trung điểm NP (I khác O).Chứng minh: A,M,O,I thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA,MB theo thứ tự C,D.Biết MA=5cm ,tính chu vi tam giác MCD
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA,MB lần lượt tại E,F.Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất
~Giải nhanh giùm mình nhé~
Cho (O;R) và M với OM =2R. Các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm), OM cắt AB tại I và cắt đường tròn Ở C, D ( MC<MD)
a) CM Tam giác MAB đều từ đó tính R độ dài cạnh của tam giác đó
B) Tính AC, AD theo R
C) CM MB là tiếp tuyến (D;DI)
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.
Từ điểm M nằm ngoài đường tròn (O; R) sao cho OM = 2R. Kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kẻ cát tuyến MCD đến đường tròn (O) (C nằm giữa M và D).
a/ Chứng minh tứ giác MAOB nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b/ Chứng minh MC. MD = 3R2
c/ OM cắt (O) tại F sao cho O nằm giữa M và F. Chứng minh tam giác AFB đều.
d/ Gọi E là giao điểm của FC và đường tròn (I). Xác định vị trí cát tuyến của MCD để SFBE đạt giá trị lớn nhất và tính giá trị đó theo R.