cho hàm số \(y=\left(m-1\right)x+2m-3\)(m là tham số ) có đồ thị là đường thẳng (d) . Tìm m để đường thẳng (d) tiếp xúc với đường tròn tâm O ( O là gốc tọa độ Oxy) bán kính 2 cm ( đơn vị trên 2 trục cm )
Cho hàm số y=(m-1)x+m (1)
Xác định m để đường thẳng (1)là tiếp tuyến của đường tròn tâm O bán kính bằng \(\sqrt{2}\)( với O là gốc toạ độ của mặt phẳng tọa độ Oxy)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d);y=2x+3m-4 ( m là tham số )
a, Tìm m để (d) cắt trục hoành tại điểm có hoành độ lớn hơn 1
b, tìm m để (d) cắt (d1) ; y=-3x+1-2m tại K (x,y) nằm trên đường tròn tâm O , bán kính \(\sqrt{5}\)
cho đường tròn có tâm là gốc tọa độ bán kính 2√2 và đường thẳng (d):y+m^2+2=x.với m<0 để đường thẳng (d) tiếp xúc với đường tròn thì m bẳng bao nhiêu
Cho hàm số \(y=\left(m-1\right)x+2m-3\)(với m là tham số) có đồ thị là hàm số. Tìm m để đường thẳng (d) tiếp xúc với đường tròn (O) (với O là gốc tọa độ Oxy) bán kính 2cm
Trong mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Hướng dẫn.
cho hàm số y=(m-1)x+m (1)
xác định m để đường thẳng 1 là tiếp tuyến của đường tròn tâm O bán kính $\sqrt{2}$√2(với O là gốc tọa độ của mặt phẳng xOy)
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
cho hàm số y=(m-1)x+m (1)
xác định m để đường thẳng 1 là tiếp tuyến của đường tròn tâm O bán kính \(\sqrt{2}\)(với O là gốc tọa độ của mặt phẳng xOy)