Trên đường tròn (O) lấy ba điểm A, B và C. Gọi M, N và P theo thứ tự là điểm chính giữa cua các cung AB, BC và AC. BP cắt AN tại I, NM cắt AB tại E. Gọi D là giao điểm của AN và BC. Chứng minh:
a, Tam giác BNI cân
b, AE.BN = EB.AN
c, EI song song BC
d, A N B N = A B B D
Cho đường tròn (O) lấy 3 điểm A,B, theo thứ tự gọi M,N,P lần lượt là điểm chính giữa của các cung AB,BC,CA. BP cắt AN tại I , MN cắt AB tại E .
a/ chứng minh tam giác BNI cân .
b/ chứng minh AE.BN=EB.AN
c/ chứng minh EI // BC.
d/ Gọi D là giao điểm của AN và BC . Chứng minh AN/BN = AB/BD
cho đường tròn (O;R) có BC là dây cố định (BC<2R) ; E là điểm chính giữa cung nhỏ BC. gọi A là điểm di động trên cung lớn BC và AB<AC (A khác B). trên đoạn AC lấy điểm D khác C sao cho ED=EC. tia BD cắt đường tròn (O;R) tại điểm thứ hai là F.
a) chứng minh D là trực tâm của tam giác AEF.
b) gọi H là trực tâm tam giác DEC ; DH cắt BC tại N. đường tròn ngoại tiếp tam giác BDN cắt đường tròn (O;R) tại điểm thứ hai là M. chứng minh đường thẳng DM luôn đi qua một điểm cố định.
Cho nửa đường tròn (O) có đường kính AB= 2R ( R> 0). Gọi C là điểm chính giữa của cung AB và M là điểm thuộc cung BC ( O khác B và C). Tiếp tuyến tại M của nửa đtròn (O) cắt các đường thẳng OC và AB theo thứ tự tại S và K. AN cắt OC tại I
a) Tính diện tích hình viên phân giới hạn bởi dây AC và cung AC ( tính theo R)
b) CM tứ giác OIMB là tứ giác nội tiếp và SI= SM
c) CM AC là tiếp tuyến của đtròn ngoại tiếp tam giác ICM
d) Gọi H là hình chiếu của M trên AB. CM BH.AK= BK.AH
Cho nửa đường tròn tâm O đường kính AB lấy điểm c thuộc nửa đường tròn sao cho AC = R.căn2. N là một điểm trên cung nhỏ BC AN cắt BC tại I tia AC cắt BN tại D a. ACO là tam giác gì b . tính độ dài BC theo R c. Tính số đo góc BAC và số đo góc CDI
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
2) Chứng minh N B 2 = N K . N M .
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
3) Chứng minh tứ giác BHIK là hình thoi.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.