ta có (x^2+3x+1)(cx+d)
=cx^3+3cx^2+cx+dx^2+3dx+d
=cx^3+(3c+d)x^2+(c+3d)x+d
đồng nhất với đa thức bị chia ta có c=1,d=1
suy ra P(x)=x^3+4x^2+4x+1
suy ra a=4,b=4
a+b=8
phải giải ra rõ ràng thì mk với biết bạn đúng hay sai chứ
Đặt tính ra số dư (b-3a+8)x+(-a+4)
Đặt (b-3a+8)x+(-a+4) =0
\(\Rightarrow\hept{\begin{cases}b-3a+8=0\left(#\right)\\-a+4=0\Leftrightarrow a=4\left(##\right)\end{cases}}\)(vì sao thì......cũng ko biết giải thích ra sao nữa)
Thay (##) vào (#) : b - 12 +8 =0 <=> b=4
Vậy tổng a+b =8