Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Tổng các nghiệm của phương trình: sin 2 ( 2 x - π / 4 ) - 3 cos ( 3 π / 4 - 2 x ) + 2 = 0 ( 1 ) trong khoảng (0;2π) là:
A. 7π/8
B. 3π/8
C. π
D. 7π/4
Tìm tất cả các giá trị của m để phương trình sin2x+m√2*sin(x+π/4)=0 có nghiệm.
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
Tìm nghiệm x ∈ (0; π) của phương trình: 5cosx + sinx - 3 = 2 sin(2x + π 4 )
A.
B.
C.
D. Vô nghiệm
Tìm số nghiệm x ∈ (0; π) của phương trình 5cosx + sinx - 3 = 2 sin(2x + π 4 ) (*)
A: 1
B: 2
C: 3
D: 4
Số nghiệm của phương trình sin ( x + π / 4 ) = 1 thuộc [0;3π] là:
A. 1
B. 0
C. 2
D. 3
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Phương trình sin ( 2 x - π 4 ) = sin ( x + 3 π 4 ) có tổng các nghiệm thuộc khoảng 0 , π bằng:
sin ( x + π 4 ) + sin ( x − π 4 ) = 0 thuộc khoảng (0;4π)