Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Tổng các nghiệm của phương trình 2cos3x(2cos2x+1)= 1 trên đoạn [-4 π ;6 π ]
A.61 π
B. 72 π
C. 50 π
D. 56 π
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
Tổng các nghiệm của phương trình: sin 2 ( 2 x - π / 4 ) - 3 cos ( 3 π / 4 - 2 x ) + 2 = 0 ( 1 ) trong khoảng (0;2π) là:
A. 7π/8
B. 3π/8
C. π
D. 7π/4
Tìm tổng các nghiệm của phương trình: sin(5x + π 3 ) = cos(2x - π 3 ) trên [0; π]
A.
B.
C.
D.
f ( x ) = 1 + cos x ( x - π ) 2 , k h i x ≠ π m , k h i x = π Tìm m để f (x) liên tục tại x = π
Tìm tổng các nghiệm của phương trình: 2 cos x - π 3 = 1 trên - π , π
Số nghiệm thuộc khoảng - 4 π 3 ; π 2 của phương trình cos ( π + x ) + 3 sin x = sin 3 x - 3 π 2 là
A. 6.
B. 2.
C. 4.
D. 3.