Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)
<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)
= \(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)
=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương
Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
n2+(n+1)2+(n+2)2+...+(n+1973)2
<=>[n2+(n+1)2+(n+3)2]+....+[(n+1971)2+(n+1972)2+(n+1973)2]
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
(3k1+2)+(3k2+2)+...+(3k658+2)
= 3.(k1+k2+k3+...+k658)+2.658
=3.(k1+k2+k3+...+k658)+1316chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương