Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Xuân Hưng

Tổng bình phương của 1974 số tự nhiên liên tiếp có phải là số chính phương hay không

Jin Air
30 tháng 7 2016 lúc 15:18

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)

<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)

\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)

=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

yuuyuyi
30 tháng 7 2016 lúc 15:31

hay ket ban voi luffy

Nguyễn Xuân Hưng
8 tháng 8 2016 lúc 14:31

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       n2+(n+1)2+(n+2)2+...+(n+1973)2

<=>[n2+(n+1)2+(n+3)2]+....+[(n+1971)2+(n+1972)2+(n+1973)2]

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

(3k1+2)+(3k2+2)+...+(3k658+2)

3.(k1+k2+k3+...+k658)+2.658

=3.(k1+k2+k3+...+k658)+1316chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

 
Lương Phương Thảo
29 tháng 3 2017 lúc 13:08

Tk cho mình đi rồi mình tk lại


Các câu hỏi tương tự
Nguyễn Hoàng Tú
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Nguyễn Thế Phúc Anh
Xem chi tiết
Phương Thảo
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Hoàng Tuấn Anh
Xem chi tiết
Jungkookie
Xem chi tiết
Minh Thư
Xem chi tiết
Lê Thị Mai Trang
Xem chi tiết