Cho hai điểm A, B thuộc đồ thị hàm số y = - x 3 + 3 x + 2 C đối xứng nhau qua điểm I - 1 ; 3 . Tọa độ điểm A là
A. A 1 ; 4
B. A - 1 ; 0
C. Không tồn tại
D. A 0 ; 2
Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = x + 1 x - 1 . A và B là hai điểm thay đổi trên đồ thị sao cho tiếp tuyến của đồ thị tại A và B song song với nhau. Biết rằng đường thẳng AB luôn đi qua một điểm cố định. Tọa độ của điểm đó là
Cho đồ thị (C) của hàm số y = x 2 - 3 x + 3 - x + 1 . Tìm điểm M trên đồ thị (C) sao cho M cách đều hai trục tọa độ
A.
B.
C.
D.
Có hai điểm A, B phân biệt thuộc đồ thị hàm số (C): y = x + 2 x - 1 sao cho A và B đối xứng với nhau qua điểm M(3;3). Tính độ dài đoạn thẳng AB.
A.
B.
C.
D.
Tọa độ cặp điểm thuộc đồ thị (C) của hàm số y = x + 4 x - 2 đối xứng nhau qua đường thẳng d: x-2y-6 = 0 là
A.
B.
C.
D.
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 Biết rằng, chỉ có hai điểm thuộc đồ thị (C) cách đều hai điểm A(2;0) và B(0;-2). Gọi các điểm đó lần lượt là M và N. Tìm tọa độ trung điểm I của đoạn thẳng MN.
A. I(-1;1)
B.I(0;-3/2)
C.I(0;3/2)
D. I(-2;2)
Trên đồ thị (C) của hàm số y = x 3 - 5 x 2 + 6 x + 3 có bao nhiêu cặp điểm đối xứng nhau qua gốc tọa độ
A. 2.
B. 1.
C. 0.
D. 3.
Tập hợp tất cả các giá trị thực của m để trên đồ thị ( C m ) của hàm số có hai điểm phân biệt đối xứng nhau qua gốc tọa độ là
A.
B.
C.
D.
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 Biết rằng chỉ có đúng hai điểm thuộc đồ thị (C) cách đều hai trục tọa độ. Gọi các điểm đó lần lượt là M và N. Tính độ dài đoạn thẳng MN.
A.
B. MN = 3
C.
D.