Cho \(\sqrt{x^2-5x+14}-\sqrt{x-5x+10}=2\)
Tính \(M=\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Giúp em với:
Cho: \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)
Tính: M= \(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)=2 tính \(M=\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Giúp mình với! Mình cần gấp lắm. Mình cảm ơn nhiều ạ!
cho \(\sqrt{x^2-5x+14}-\sqrt{x^2+5x+10}=2.\)
tinh gia tri \(M=\sqrt{x^2-5x+14}+\sqrt{x^2+5x+10}\)
Bài 1 : Cho \(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}=2\) Tính giá trị biểu thức M = \(\sqrt{x^2-5x+10}+\sqrt{x^2-5x+10}\)
Bài 2 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Cho M= \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}\)=0. Tính giá trị biểu thức liên hợp của vế phải
Bài 1 : Cho biểu thức R = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\cdot\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ Rút gọn R
b/ Tìm các giá trị của x để R < -1
Bài 2 : Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)Tính giá trị biểu thức M =\(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Bài 3 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Tìm giá trị nhỏ nhất của
M = \(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Phương pháp 6. Biến đổi về dạng \(A^2=B^2\)
a \(x^2+4\sqrt{x+3}=3x+6\)
b \(4x^2+14x+11=4\sqrt{6x+10}\)
c \(4\sqrt{x+1}=x^2-5x+14\)