\(2M=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Lấy 2M-M theo từng vế ta được:
\(2M-M=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^{98}}\)\(-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{99}}\)
\(M=2-\frac{1}{2^{99}}\)
Ko tính ra được kết quả cụ thể