Cho \(M=\frac{1+ab}{a+b}+\frac{1-ab}{a-b}\)
Tính M biết: \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(b=\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)
a) Tính : \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(\sqrt{72}-5\sqrt{20}-2\sqrt{2}\right)\)
b) Giải phương trình: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=12\)
a)\(\left(\sqrt{5}+2\right).\left(17-4\sqrt{9+4\sqrt{5}}\right)?\)
b)\(\left(\sqrt{3-1}\right).\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
c) \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
d) \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}.\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
\(\left(\sqrt{45}-2\sqrt{10}+\sqrt{5}\right)\sqrt{5}+5\sqrt{8}\)
Tính
Rút gọn
a)\(\frac{1}{2}\sqrt{12}+3\sqrt{\frac{1}{2}}+\)\(2\sqrt{3}\)
b)\(\sqrt{45}-2\sqrt{18}+\sqrt{20}-3\sqrt{72}\)
c)\(\left(3+\sqrt{3}\right).2\sqrt{3}-\left(2\sqrt{3}-4\right)^2\)
d)\(\left(\sqrt{7}-\sqrt{28}+2\sqrt{3}\right).\sqrt{7}+\sqrt{84}\)
e)\(\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{96}\)
a, \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b, \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
c, \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)
B1:Tính
a,\(\sqrt{\left(4-\sqrt{17}\right)^2}-\left(\sqrt{17}+2\right)\) b,\(\dfrac{7}{\sqrt{3}-\sqrt{2}}-\sqrt{147}-2\sqrt{18}\)
c,\(\dfrac{6}{\sqrt{5}-2}-\dfrac{6}{\sqrt{5}+2}+\sqrt{8}-4\sqrt{\dfrac{1}{7}}\) ; \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Bài 1: Tính
a, \(4\sqrt{8}+\sqrt{18}-6\sqrt{\frac{1}{2}}-\sqrt{200}\)
b, \(\left(\sqrt{27}-2\sqrt{3}+\sqrt{12}\right).\sqrt{3}+\sqrt{75}\)
c,\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\right)^2-\left(\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)^2\)
d, \(\left(2-\sqrt{2}\right).\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)