\(=\dfrac{1}{4}xy^2-\dfrac{2}{5}xy-\dfrac{3}{4}y^2+\dfrac{6}{5}y+\dfrac{3}{8}y-\dfrac{3}{5}\\ =\dfrac{1}{4}xy^2-\dfrac{2}{5}xy-\dfrac{3}{4}y^2+\dfrac{63}{40}y-\dfrac{3}{5}\)
\(=\dfrac{1}{4}xy^2-\dfrac{2}{5}xy-\dfrac{3}{4}y^2+\dfrac{6}{5}y+\dfrac{3}{8}y-\dfrac{3}{5}\\ =\dfrac{1}{4}xy^2-\dfrac{2}{5}xy-\dfrac{3}{4}y^2+\dfrac{63}{40}y-\dfrac{3}{5}\)
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
BT10: Thực hiện phép tính
\(a,-xyz^2\)\(-3xz.yz\)
\(b,-8x^2\)\(y-x.\left(xy\right)\)
\(c,4xy^2\) \(.x-\left(-12x^2y^2\right)\)
\(d,\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y.y^2\)
\(e,3xy\left(x^2y\right)-\dfrac{5}{6}x^3y^2\)
\(f,\dfrac{3}{4}x^4y-\dfrac{1}{6}xy.x^3\)
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)
Thực hiện phép tính:
a, \(\dfrac{x^2-1}{2x-y}+\dfrac{3x^2-3}{y-2x}-\dfrac{2x^2+7}{y-2x}\)
\(b,\dfrac{x+y}{1-xy}+\dfrac{x-y}{1-xy}-\dfrac{2x-3y}{xy-1}\)
rút gọn và tính giá trị biểu thức sau tại x=-1,76và y=3/25
P=\([\)(\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\dfrac{4\text{x}^4+4\text{x}^2y+y^2-4}{x^2+y+xy+x}\)\(]\):\(\dfrac{x+1}{2\text{x}^2+y+2}\)
Thịnh giải hộ
Rút gọn:
\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)