d) \(\sqrt{46+6\sqrt{5}}=\sqrt{45+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}+1\right)^2}=\left|3\sqrt{5}+1\right|=3\sqrt{5}+1\)
e) \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}+1\right)^2}=\left|2\sqrt{2}+1\right|=2\sqrt{2}+1\)
f) \(\sqrt{16+2\sqrt{15}}=\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\left|\sqrt{15}+1\right|=\sqrt{15}+1\)
d
\(=\sqrt{45+\sqrt{180}+1}=\sqrt{45+\sqrt{36.5}+1}=\sqrt{45+6\sqrt{5}+1}\\ =\sqrt{\left(\sqrt{45}\right)^2+6\sqrt{5}+1}=\sqrt{\left(\sqrt{45}+1\right)^2}=\sqrt{45}+1\)
e
\(=\sqrt{8+\sqrt{32}+1}=\sqrt{8+\sqrt{4.8}+1}=\sqrt{\left(\sqrt{8}\right)^2+2\sqrt{8}+1^2}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)
f
\(\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\sqrt{15}+1\)