=\(2-\sqrt{5}-3+3\sqrt{5}=-1+2\sqrt{5}\)
=\(2-\sqrt{5}-3+3\sqrt{5}=-1+2\sqrt{5}\)
Thực hiện phép tính
\(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(\sqrt{72}-5\sqrt{20}-2\sqrt{2}\right)\)
Chứng minh đẳng thức
\(\left(3+\sqrt{5\:}\right)\left(\sqrt{10\:\:\:\:\:\:}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
Rút gọn biểu thức sau
a)\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b)\(\sqrt{2+\sqrt{3}}\sqrt{2+\sqrt{2+\sqrt{3}}.\sqrt{2}}-\sqrt{2+\sqrt{2}}\)
Tính
\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
.Làm ngắn các câu sau
a)\(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
b) \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
1.Rút gọn:
a) \(A=\sqrt{2+\sqrt{3}.}\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
b) \(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
Tính GTBT chứa căn:
a,\(\left(\sqrt{14}-3\sqrt{2}\right)^2\)+\(6\sqrt{28}\)
b,\(\left(\sqrt{6}-\sqrt{5}\right)^2\)-\(2\sqrt{120}\)
c,\(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)
Bài 1. Rút gọn
a. \(2\sqrt{8}-3\sqrt{18}+\sqrt{32}\)
b. \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
c. \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{2-\sqrt{3}+\sqrt{2+\sqrt{3}}}\)
Bài 2. Giải phương trình
a. \(x\sqrt{8}-6\sqrt{2}=0\)
b. \(\sqrt{2x+1}-3=0\)
c. \(\sqrt{x^2-4x+4}-3=0\)
d. \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25+2}=0\)
Giải phương trình:
a)\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b)\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
c)\(x^2+\sqrt{x+5}=5\)