Tính:
\(A=\sqrt{38-12\sqrt{5}}+\sqrt{36+12\sqrt{5}}\)
Tính:
\(A=\sqrt{38-12\sqrt{5}}+\sqrt{36+12\sqrt{5}}\)
A= \(\sqrt{6+\sqrt{24}+\sqrt{8}+\sqrt{12}}-\sqrt{5+2\sqrt{6}}\)
B= \(\sqrt{12+\sqrt{60}+\sqrt{48}+\sqrt{80}}-\sqrt{8+2\sqrt{15}}\)
C= \(\sqrt{39+12\sqrt{10}+6\sqrt{2}+4\sqrt{5}}-\sqrt{38+12\sqrt{10}}\)
tính P= a3 +b3- 3(a+b)+2018. Biết
a=\(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\)
\(b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Chứng minh A,B là số nguyên với:
A = \(\sqrt{6-2\sqrt{5}}\)- \(\sqrt{6+2\sqrt{5}}\)
B= \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17}-12\sqrt{2}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
Tính:
\(a,-0,8.\sqrt{\left(-0,125\right)^2}\)
\(b,\sqrt{\left(-2\right)^6}+\sqrt{\left(-3\right)^4}\)
\(c,\sqrt{3+2\sqrt{2}}-\sqrt{2}\)
\(d,\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(e,\sqrt{16-6\sqrt{7}}-2\sqrt{7}\)
\(g,\sqrt{30+12\sqrt{6}}+\sqrt{30-12\sqrt{16}}\)
B= \(\sqrt{6+2\sqrt{2.}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(\frac{\sqrt{2}+\sqrt{5-\sqrt{14}}}{\sqrt{12}}\)
Tính
a/ A=\(\sqrt{6-2\sqrt{5}}\) - \(\sqrt{5}\)
b/ B=\(\sqrt{17\sqrt{2}-24}\)+ 4
c/ C=\(\sqrt{12+6\sqrt{3}-4}\)- \(\sqrt{3}\)