Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Võ Anh Nguyên

Tính:

A=\(\frac{2.1+1}{\left[1.\left(1+1\right)\right]^2}+\frac{2.2+1}{\left[2.\left(2+1\right)\right]^2}+...+\frac{2.99+1}{\left[99\left(99+1\right)\right]^2}\)

alibaba nguyễn
29 tháng 6 2017 lúc 15:24

Ta có:

\(\frac{2n+1}{\left[n\left(n+1\right)\right]^2}=\frac{n+n+1}{n^2\left(n+1\right)^2}=\frac{1}{n\left(n+1\right)^2}+\frac{1}{n^2\left(n+1\right)}\)

\(=\frac{1}{n\left(n+1\right)}.\left(\frac{1}{n}+\frac{1}{n+1}\right)=\left(\frac{1}{n}-\frac{1}{n+1}\right).\left(\frac{1}{n}+\frac{1}{n+1}\right)\)

\(=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

Áp dụng vào bài toán ta được

\(A=\frac{2.1+1}{\left[1\left(1+1\right)\right]^2}+\frac{2.2+1}{\left[2\left(2+1\right)\right]^2}+...+\frac{2.99+1}{\left[99\left(99+1\right)\right]^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)

\(=1-\frac{1}{100^2}=\frac{9999}{10000}\)


Các câu hỏi tương tự
super hacker pro
Xem chi tiết
nguyễn thị thảo vân
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Trần Sơn Tùng
Xem chi tiết
giang nguyen
Xem chi tiết
~Tiểu Hoa Hoa~
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
Xem chi tiết
Lê Hà Vy
Xem chi tiết