\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+.....+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right)+\left(99+2\right)+\left(98+3\right)+...+\left(51+50\right)\)(có 50 cặp)
=101x50=5050
1002-992+982-972+...+22-1
= (100-99)(100+99) + (98-97)(98+97)+...+(2-1)(2+1)
=100+99+98+97+...+2+1
=\(\frac{\left(100+1\right).100}{2}\)= 5050
1002-992+982-972+...+22-1
=(100-99)(100+99)+(98-97)(98+97)+...+(4-3)(4+3)+(2-1)(2+1)
=199+195+191+...+7+3
=((199+3)x49):2
=4949