\(x+y+z=0\)
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Leftrightarrow2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=-2\)
\(\Leftrightarrow xy+yz+xz=-1\)
\(\Leftrightarrow\left(xy+yz+xz\right)^2=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyyz+2xyxz+2yzxz=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\cdot0=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2=1\)(*)
Ta lại có : \(x^2+y^2+z^2=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=2^2\)
\(\Leftrightarrow x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2=4\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+x^2z^2+y^2z^2\right)=4\)
Thay (*) vào đẳng thức ta có :
\(x^4+y^4+z^4+2\cdot1=4\)
\(\Leftrightarrow x^4+y^4+z^4=4-2=2\)
Vậy \(x^4+y^4+z^4=2\)tại \(x+y+z=0;x^2+y^2+z^2=2\)