Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)
\(\sqrt{x^2+2018}+x>\sqrt{x^2}>=x \)
=> \(\sqrt{x^2+2018}-x>0\)
=> \(\sqrt{x^2+2018}-x\)khác 0
=> (\(\left(\sqrt{x^2+2018}-x\right)\left(\sqrt{x^2+2018}+x\right)\left(\sqrt{y^2+2018}+y\right)=2018\left(\sqrt{x^2+2018}-x\right)\)
<=> 2018\(\left(\sqrt{y^2+2018}+y\right)\)= 2018\(\left(\sqrt{x^2+2018}-x\right)\)
<=> \(\sqrt{y^2+2018}+y=\sqrt{x^2+2018}-x\)
Chứng minh tương tự => \(\sqrt{x^2+2018}+x=\sqrt{y^2+2018}-y\)
Cộng 2 cái vào. Khử được hạng tử. suy ra đc x+y=0 rồi tự làm cưng e nhé
Cho các số thực x,y thỏa mãn điều kiện:
\(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính giá trị của biểu thức: \(M=x^{11}-y^{2018}\)
Cho x, y thỏa mãn : \(\sqrt{x^2+11}+\sqrt{x-2018}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
Tính \(M=x^{11}-y^{2018}\)
Cho x, y thỏa mãn: \(\left(x+\sqrt{2018+y^2}\right)\left(y+\sqrt{2018+x^2}\right)=2018\)
Tính x^3+y^3
Cho\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}.\)
Tính giá trị biểu thức của \(S=x^{2018}+y^{2018}+z^{2018}\)
Cho hệ \(\hept{\begin{cases}2x-y=m-2\\x+2y=3m+4\end{cases}}\)
a) khi m=1 giải hệ
b) tìm m để x2+y2=10
c) cho pt: x+\(\sqrt{x^2+2018}\)+y+\(\sqrt{y^2+2018}=2018\)
tính x+y=?
Cho x> 2018 , y> 2018 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
Tính P =\(\frac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)