Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Trần Thảo Nguyên

Tính tổng

S= \(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

 

tth_new
12 tháng 5 2019 lúc 9:39

Có lẽ là làm như vầy ạ:

Ta thấy số hạng tổng quát của tổng có dạng \(\frac{1}{\sqrt{n}+\sqrt{n+1}}\) với n là số tự nhiên thỏa mãn: \(1< n< 2006\)

Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)(áp dụng hằng đẳng thức : a2 - b2 = (a-b)(a+b) vào cái mẫu)

Do vậy: \(S=\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2005}-\sqrt{2004}+\sqrt{2006}-\sqrt{2005}\)

\(=-\sqrt{2}+\left(\sqrt{3}-\sqrt{3}\right)+...+\left(\sqrt{2005}-\sqrt{2005}\right)+\sqrt{2006}\) (gom hết các số hạng giống nhau bỏ vô ngoặc)

\(=\sqrt{2006}-\sqrt{2}\)

Vậy \(S=\sqrt{2006}-\sqrt{2}\)

tth_new
12 tháng 5 2019 lúc 9:44

Bài lớp 9 này hơi quá trình độ lớp 7 của em (có gì sai sót xin thông cảm cho ạ)!


Các câu hỏi tương tự
Ngô Thị Thu Trang
Xem chi tiết
Ngô Thị Thu Trang
Xem chi tiết
Đinh Nguyễn Nguyệt Hà
Xem chi tiết
Bùi Khắc Tuấn Khải
Xem chi tiết
Thanh Huong
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Trương Nguyễn Tú Anh
Xem chi tiết
tnhy
Xem chi tiết
Hồ Thị Hải Yến
Xem chi tiết