S=3+3/2+3/3^2+3/2^3+3/2^4+...........+3/2^9
2S=6+3/2+3/2^2+3/2^3+..........+3/2^8
S=2S-S=(6+3+3/2+3/2^2+3/2^3+3/2^4+...........+3/2^8)-(3+3/2+3/2^2+3/2^3+3/2^4+.....+3/2^9)
S=6-3/2^9
S=3069/512.
\(S=3\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=3\cdot\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\) \(=3\cdot\left(1+1-\frac{1}{2^9}\right)=3\left(2-\frac{1}{2^9}\right)=3\cdot\frac{1023}{512}=\frac{3069}{512}\)