Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Xuân Dũng

tính tổng

A=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

soyeon_Tiểu bàng giải
11 tháng 9 2016 lúc 11:09

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Phương Anh
11 tháng 9 2016 lúc 11:12

A = \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)= \(\frac{2}{3}.\frac{99}{100}\)= \(\frac{33}{50}\)
 

Trieu Minh Anh
11 tháng 9 2016 lúc 11:17

A = \(\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+....+\frac{2}{97\cdot100}\)

A = \(\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{97\cdot100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\cdot\frac{99}{100}\)

A = \(\frac{33}{50}\)


Các câu hỏi tương tự
Xem chi tiết
_Nhạt_
Xem chi tiết
pham tu anh
Xem chi tiết
Phát Lê
Xem chi tiết
Hồ Thị Phương Thanh
Xem chi tiết
bade siêu quậy
Xem chi tiết
Mickey Vân
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Lê Thu Hà
Xem chi tiết