\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+...+\frac{2}{2^9}\)
\(2A=2+1+\frac{1}{2}+...+\frac{2}{2^8}\)
=>\(A=2+\frac{-1}{29}\)
=>\(A=\frac{57}{29}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> \(2A=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)
=> \(A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
=> \(A=2+1+\frac{1}{2}+...+\frac{1}{2^8}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\)
=> \(A=2-\frac{1}{2^9}\)