1/1.2+1/2.3+1/3.4+...+1/99.100
= 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=100/100-1/100
=99/100
Ta có: 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
= 1 - 1/100
= 99/100
Đúng 100%
1/1.2+1/2.3+1/3.4+...+1/99.100
= 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=100/100-1/100
=99/100
Ta có: 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
= 1 - 1/100
= 99/100
Đúng 100%
Chứng minh : với k thuộc N* ta luôn có: k(k +1 )(k+2)-(k-1)k(k+1)=3k(k+1)
Áp dụng tính tổng 1.2+2.3+3.4+...+n(n+1)
Cm với kEn* ta luôn có k(k+1)(k+2)-(k+1)k(k+1)=3.k(k+1).Áp dụng tính tổng S=1.2+2.3+3.4+...+n(n+1).
Chứng minh : Với k thuộc N* ta luôn có : k.(k+1).(k+2)-(k-1).k.(k+1)=3.k.(k+1)
Áp dụng tính tổng : S=1.2+2.3+3.4+...+n.(n+1).
Chứng minh : Với k thuộc N* ta luôn có : k.(k+1).(k+2)-(k-1).k.(k+1)=3.k.(k+1)
Áp dụng tính tổng : S=1.2+2.3+3.4+...+n.(n+1).
Chứng minh:Với k thuộc N* ta luôn có:
k(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
áp dụng tính tổng :S=1.2+2.3+3.4+...+n.(n+1)
Chứng minh : Với k thuộcN* ta luôn có: k(k+1)(k+2)-(k-1)k(k+1)=3.k(k+1). Áp dụng tính tổng : S=1.2+2.3+3.4+...+n.(n+1)
Chứng minh: Với k thuộc N*, ta luôn có: k (k+1) (k+2) - (k-1) k (k+1) = 3.k (k+1)
Áp dụng tính tổng: S = 1.2 + 2.3 + 3.4 + ... + n.(n+1)
CM : Với k là STN khác 0, ta luôn có:
k(k+1)(k+2) - (k-1)k(k+1) = 3k(k+1)
Áp dụng tính tổng : S = 1.2 + 2.3 + 3.4 +...+n(n+1)
chứng mjnh: với k thuộc N* ta luôn có: k(k+1)(k+2)-(k-1)k(k+1)= 3.k(k+1)
từ trên , hãy áp dụng tính tổng :S=1.2+2.3+3.4+....+n(n+1)