\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{2015}}\)
=>\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2015}}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)\)
=>\(A=1-\frac{1}{2^{2016}}\)
=>\(A=\frac{2^{2016}-1}{2^{2016}}\)
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
ta có : 2A = 2 . ( 1 + 1/2^2 + 1/2^3 + ... + 1/2^2016 )
= 1 + 1/2 + 1/2^2 + ... + 1/2^2017
=>2A - A = (1 + 1/2 + 1/2^2 + ... + 1/2^2015 ) - ( 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^2016 )
=1 - 1/2^2016 = 2^2016 - 1/2^2016
đến đây ko tính được nữa, bạn cứ dữ đáp án này là được!