\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)