\(Q=1+3^3+3^6+3^9+...+3^{99}\)
\(3^3Q=3^3+3^6+3^9+3^{12}+...+3^{102}\)
\(27Q-Q=\left(3^3+3^6+3^9+3^{12}+...+3^{102}\right)-\left(1+3^3+3^6+3^9+...+3^{99}\right)\)
\(26Q=3^{102}-1\)
\(Q=\dfrac{3^{102}-1}{26}\)
Q = 1 + 33 + 36 + 39 + ... + 399
33Q = 33 + 36 + 39 + 312+ ...+ 3102
27Q - Q = 33 + 36 + 39 + 312 +... + 3102 - (1 + 33 + 36 + 39 + ... + 399)
26Q = 33 + 36 + 39 + 312 + ... + 3102 - 1 - 33 - 36 - 39 - ...- 399
26Q = (3102 - 1) + (33 - 33) + (36 - 36) + ... + (399 - 399)
26Q = 3102 - 1 + 0 + 0 + 0 + ... + 0
26Q = 3102 - 1
Q = \(\dfrac{3^{102}-1}{26}\)