tính tổng các nghiệm thuộc \([0;2\pi]\)thoả mãn phương trình
\(\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)^2+\sqrt{3}\cos x=3\)
Phương trình \(\sqrt{2}\left(\sin x+\cos x\right)-\sin x\cos x=1\)có bao nhiêu nghiệm thuộc \(\left(0;2\pi\right)\)
Giaỉ các phương trình lượng giác sau:
1. sin(sinx)=0
2. sin(cosx)=0
3. \(\sqrt{3}\sin-\cos x=2cos3x\)
4. \(\sin2x=sin\left(2x-\dfrac{\pi}{2}\right)\)
5. \(4\cos\left(3\pi-2x\right)=\sqrt{2}\)
1) cho góc x thỏa mãn \(cosx=-\dfrac{4}{5}\) và \(\pi< x< \dfrac{3\pi}{2}\) tính \(P=tan\left(x-\dfrac{\pi}{4}\right)\)
2) giải phương trình \(2cosx-\sqrt{2}=0\)
3) phương trình lượng giác \(cos3x=cos\dfrac{\pi}{15}\) có nghiệm là
Gọi S là tập hợp các nghiệm thuộc khoảng \(\left(0;100\pi\right)\) của phương trình : \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=3\) . Tổng các phần tử của S là :
A . \(\frac{7400\pi}{3}\)
B . \(\frac{7525\pi}{3}\)
C . \(\frac{7375\pi}{3}\)
D . \(\frac{7550\pi}{3}\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
HELP ME !!!!!!
Phương trình \(sin\left(x^2-5x\right)=\dfrac{-\sqrt{3}}{2}\) có bao nhiêu nghiệm thuộc \(\left[0;\dfrac{\pi}{2}\right]\)
Phương trình \(\left(\sqrt{3}-1\right)sinx-\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)có các nghiệm là :
A.\(\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
B.\(\left[{}\begin{matrix}x=-\dfrac{\pi}{2}+k2\pi\\x=\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
C.\(\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{9}+k2\pi\end{matrix}\right.\)
D.\(\left[{}\begin{matrix}x=-\dfrac{\pi}{8}+k2\pi\\x=\dfrac{\pi}{12}+k2\pi\end{matrix}\right.\)
Giải một trong 4 đáp án trên hộ em ạ em cảm ơn
nghiệm âm lớn nhất và nghiệm dương nhỏ của phương trình \(\sin4x+\cos5x=0\) theo thứ tự?
tìm tổng các nghiệm của phương trình \(\sin\left(5x+\frac{\pi}{3}\right)=\cos\left(2x-\frac{\pi}{3}\right)\)trên \(\left[0,\pi\right]\)
giải phương trình
a) \(sin\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
b) \(cos\left(x+\dfrac{\pi}{4}\right)=cos\dfrac{3\pi}{4}\)
c) \(tan2x=tan\left(x+\dfrac{\pi}{3}\right)\)
d) \(cot2x=-\dfrac{\sqrt{3}}{3}\)