Cho lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của điểm A′ lên mặt phẳng (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, biết O A ' = a . Tính theo a thể tích V của khối lăng trụ đã cho.
A. 3 a 3 4 .
B. 3 a 3 3 .
C. 3 a 3
D. 3 a 3 12
Một lăng trụ đứng có đáy là tam giác đều cạnh a, cạnh bên bằng b. Khi đó thể tích V của khối lăng trụ đó là
A. V = a 2 b 3 4 .
B. V = a 2 b 3 12 .
C. V = a 2 b 2 .
D. V = a b 2 3 4 .
Một lăng trụ đứng có đáy là tam giác đều cạnh a, cạnh bên bằng b. Khi đó thể tích V của khối lăng trụ đó là
A. V = a 2 b 3 4 .
B. V = a 2 b 3 12 .
C. V = a 2 b 2 .
D. V = a b 2 3 4 .
Cho khối chóp tam giác đều S.ABCD có cạnh đáy bằng a , S A = 3 . Tính thể tích V của khối chóp S.ABCD
A. V = 35 a 3 24
B. V = 3 a 3 6
C. V = 2 a 3 6
D. V = 2 a 3 2
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60 0 , cạnh AB = 2. Thể tích V của khối lăng trụ ABC.A′B′C′ là
A. 3 3 4
B. 3
C. 3
D. 3 3
Cho khối lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a và điểm A’ cách đều ba điểm A, B, C. Cạnh bên AA’ tạo với mặt phẳng đáy một góc 60 ° Tính thể tích khối lăng trụ ABC.A’B’C’
A. a 3 3 10
B. a 3 3 12
C. a 3 3 4
D. a 3 3 8
Cho hình lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm O của tam giác đều ABC đến mặt phẳng (A'BC) bằng a/6. Tính thể tích V của khối lăng trụ ABCA’B’C’
A. V = a 3 3 3 16
B. V = a 3 2 6
C. V = a 3 3 2 16
D. V = a 3 3 6
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Đường thẳng AB' hợp với đáy một góc 60 ° . Tính thể tích V của khối lăng trụ ABC.A'B'C'.
A. V = 3 a 3 2
B. V = a 3 4
C. V = 3 a 3 4
D. V = a 3 2
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a. Đường thẳng AB’ hợp với đáy một góc 60 độ. Tính thể tích V của khối lăng trụ ABC.A’B’C’.
A. V = 3 a 3 2
B. V = a 3 4
C. V = 3 a 3 4
D. V = a 3 2