Xét tổng quát :
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{\sqrt{n}+\sqrt{n+1}}{n-n-1}=-\left(\sqrt{n}-\sqrt{n+1}\right)=-\sqrt{n}+\sqrt{n+1}\)
Với n = 2 ; 3 ; 4 ; .... 2015 ta có :
\(Q=-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}+....-\sqrt{2015}+\sqrt{2016}\)
Q = \(\sqrt{2016}-\sqrt{2}\)