\(=\dfrac{1}{2-\dfrac{1}{2-1:\dfrac{3}{2}}}=\dfrac{1}{2-\dfrac{1}{2-\dfrac{2}{3}}}=\dfrac{1}{2-1:\dfrac{4}{3}}=\dfrac{1}{2-\dfrac{3}{4}}=1:\dfrac{5}{4}=\dfrac{4}{5}\)
\(=\dfrac{1}{2-\dfrac{1}{2-1:\dfrac{3}{2}}}=\dfrac{1}{2-\dfrac{1}{2-\dfrac{2}{3}}}=\dfrac{1}{2-1:\dfrac{4}{3}}=\dfrac{1}{2-\dfrac{3}{4}}=1:\dfrac{5}{4}=\dfrac{4}{5}\)
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
1, Tính hợp lí
\(A=\dfrac{0.5+\dfrac{7}{12}-\dfrac{5}{6}}{1-\dfrac{2}{3}+0,75}\)
\(B=-66.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124.\left(-37\right)+126.\left(-62\right)\)
\(N=\left(60\dfrac{7}{13}+50\dfrac{8}{13}-11.\dfrac{2}{13}\right)x\) (Với \(x=-2017\dfrac{7}{10}\))
\(M=\left(1-\dfrac{2}{2.3}\right).\left(1-\dfrac{2}{3.4}\right).\left(1-\dfrac{2}{4.5}\right).....\left(1-\dfrac{2}{99.100}\right)\)
Tính : A = \(\dfrac{\dfrac{1}{14}-\dfrac{1}{30}-\dfrac{1}{46}}{\dfrac{2}{35}-\dfrac{2}{75}-\dfrac{2}{115}}\):\(\frac{\frac{3}{8}-\frac{15}{17}+\frac{30}{31}}{\frac{1}{6}-\frac{20}{51}+\frac{40}{93}}\)
Tính
\(C=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+..+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
So sánh A và B với \(\dfrac{1}{2}\) biết :
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+........+\dfrac{1}{49.50^2}\) và
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{50^2}\)
Tính: a) A=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{2023.2024}\)
cứu tôi mng owiiii :((
thực hiện phép tính
\(l.\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{23}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{23}}\times\dfrac{\dfrac{1}{3}-0.25-0.2}{1\dfrac{1}{6}-0.875-0.7}\)
Tính A=\((1-\dfrac{1}{1+2}).\left(1-\dfrac{1}{1+2+3}\right).\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+..,+2017}\right)\)
Tính hợp lí:
\(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}-4-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)