\(B=\dfrac{1}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{33}{100}\)
\(3\times B=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+....+\dfrac{3}{97\times100}\)
\(3\times B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(3\times B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{33}{100}\)
`#ava`
`B` = `frac{1}{1 × 4}` + `frac{1}{4×7}` + `frac{1}{7×10}` + ....+ `frac{1}{97×100}`
`B` = `(``frac{3}{1 × 4}` + `frac{3}{4×7}` + `frac{3}{7×10}` + ....+ `frac{3}{97×100}`)```×1/3`
`B =` `1-1/4+1/4-1/7+1/7-1/10+....+1/97 -1/100) × 1/3`
`B = (1-1/100) × 1/3`
`B= 1/3×99/100`
`B=33/100`