\(a,\left(1-\dfrac{1}{10}\right)\times\left(1-\dfrac{1}{11}\right)\times\left(1-\dfrac{1}{12}\right)\times\left(1-\dfrac{1}{13}\right)\times\left(1-\dfrac{1}{14}\right)\times\left(1-\dfrac{1}{15}\right)=\dfrac{9}{10}\times\dfrac{10}{11}\times\dfrac{11}{12}\times\dfrac{12}{13}\times\dfrac{13}{14}\times\dfrac{14}{15}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(b,\dfrac{2013\times2012-2}{2011+2011\times2013}=\dfrac{\left(2014-1\right)\times2012-2}{2011\times\left(2013+1\right)}=\dfrac{2014\times2012-2012-2}{2011\times2014}=\dfrac{2014\times2012-2014}{2011\times2014}=\dfrac{2014\times\left(2012-1\right)}{2011\times2014}=\dfrac{2011\times2014}{2011\times2014}=1\)