\(A=\dfrac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\dfrac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\dfrac{32.54}{9.64}=\dfrac{6}{2}=3\)
\(A=\dfrac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\dfrac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\dfrac{32.54}{9.64}=\dfrac{6}{2}=3\)
cho 3 số a,b,c thỏa mãn
\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)
tính giá trị biểu thức A=\(\dfrac{a^2+b^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{b^2+c^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{c^2+a^2}{\left(c+b\right)\left(a+b\right)}\)
1) Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
CMR: \(a=b=c=1\)
2) CMR: nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
3) Cho \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Rút gọn biểu thức :
a) \(\left(1+\dfrac{1}{2}\right).\left(1+\dfrac{1}{4}\right).\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)
b) \(\left(10+1\right).\left(10^2+1\right)\left(10^3+1\right)...\left(10^{2n}+1\right)\)
Tìm giá trị nhỏ nhất của đa thức :
\(E=\left(x-3\right)^2+\left(x-11\right)^2\)
\(F=\dfrac{-2}{x^2-2x+5}\)
\(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Chứng minh:
a) \(x\ne0,y\ne0\) và \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
b) \(x\ne0,y\ne0,z\ne0\) và \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Cho a + b + c = 4m. Chứng minh rằng:
\(\left(\dfrac{a+b-c}{2}\right)^2+\left(\dfrac{a-b+c}{2}\right)^2+\left(\dfrac{-a+b+c}{2}\right)^2=a^2+b^2+c^2-4m^2\)
Cho a+b+c =1/2 Tính \(\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)
1. tính
a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)
b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)
c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)
d) \(\left(\dfrac{1}{2}x-2y\right)^3\)
e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)
f) \(27x^3-8y^3\)
g) 4(2x - 3y) - 4 - (2x-3y)2
2. rút gọn
a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)
b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)
3. c/m các biểu thức sau ko phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
4. Tìm x
a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)
b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
c) \(49x^2+14x+1=0\)
d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
5. c/m biểu thức luôn dương:
a) \(A=16x^2+8x+3\)
b) \(B=y^2-5y+8\)
c) C= \(2x^2-2x+2\)
d) \(D=9x^2-6x+25y^2+10y+4\)
6. Tìm GTLN và GTNN của các biểu thức sau
a) \(M=x^2+6x-1\)
b) \(N=10y-5y^2-3\)
7. thu gọn
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
Tính
\(S=\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+3+...+2013\right)+\dfrac{1}{2014}\left(1+2+3+...+2014\right)\)