Ta có A = \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right)...\left(1-\frac{1}{780}\right)\)
= \(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{1558}{1560}=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{38.41}{39.40}=\frac{\left(1.2.3...38\right).\left(4.5.6...41\right)}{\left(2.3.4...39\right).\left(3.4.5...40\right)}\)
= \(\frac{1.41}{39.3}=\frac{41}{117}\)