Ta có: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{23\cdot27}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{23}-\dfrac{1}{27}\)
\(=\dfrac{1}{3}-\dfrac{1}{27}=\dfrac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)