Ta có: \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
=>2A=\(1+\frac{1}{2^2}+...+\frac{1}{2^4}+\frac{1}{2^5}\)
=>2A-A=(\(1+\frac{1}{2^2}+...+\frac{1}{2^4}+\frac{1}{2^5}\))--(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\))
=>A=\(1-\frac{1}{2^6}\)
=>A=\(\frac{63}{64}\)