ta có: 2a+2b+2c=by+cz+ax+cz+ax+by
suy ra: 2(a+b+c)=2(ax+by+cz)
a+b+c=ax+by+cz
a+b+c=ax+2a(vì by+cz=2a)
a+b+c=a(x+2)
1/x+2=a/a+b+c
Tương tự: 1/y+2=b/a+b+c
1/z+2=c/a+b+c
suy ra: M=a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
ta có: 2a+2b+2c=by+cz+ax+cz+ax+by
suy ra: 2(a+b+c)=2(ax+by+cz)
a+b+c=ax+by+cz
a+b+c=ax+2a(vì by+cz=2a)
a+b+c=a(x+2)
1/x+2=a/a+b+c
Tương tự: 1/y+2=b/a+b+c
1/z+2=c/a+b+c
suy ra: M=a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
cho 2a=by+cz ; 2b=ax+cz ;2c=ax+by và a+b+c khác 0
Tính M=1/(x+2) + 1/(y+2) + 1/(z+2) = ?
Cho x,y,z khác 2 và thỏa mãn: 2a=by+cz; 2b=ax+cz; 2c=ax+by
Tính \(A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
Cho by+cz=2a
cz+ax=2b
ax+by=2c
Và \(a+b+c\ne0\)
Tính \(P=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
tính giá trị của biểu thức:
M=\(\frac{1}{x+2}\)+\(\frac{1}{y+2}\)+\(\frac{1}{z+2}\) biết rằng: 2a=by+cx; 2b=ax+cz; 2c= ax+by va a+b+c \(\ne\)0
Cho \(x,y,z\ne2\), 2a=by+cz, 2b=bx+cz, 2c=ax+by
Tính giá trị của biểu thức:
\(A=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\)
Cho ax + by + cz = 0. CMR:
ax^2 + by^2 + cz^2/ bc(y-z)^2 + ca(z-x)^2 + ab(x-y)^2 = 1/a+b+c
Biet ax+by+cz=0 va a+b+c=1/2003
Tinh ax^2+by^2+cz^2 / bc(y-z)^2+ac(x-z)^2+ab(x-y)^2
Cho x= by+cz , y= ax+cz z= ax +by và x+ +y + z =0
Tính Q = 1/a+1 + 1/b+1 + 1/c+1
cho ax+by+cz=0 và a+b+c =2019.Tính
A=bc(x-y)^2+ac(x-z)^2+ab(x-y)^2/ax^2+by^2+cz^2