Lời giải:
$x=-2+t; y=1+2t$
$\Rightarrow 2x-y=2(-2+t)-(1+2t)=-5$
$\Leftrightarrow 2x-y+5=0$
Khoảng cách từ điểm $M$ đến $(\Delta)$ là:
\(\frac{|2.3-(-1)+5|}{\sqrt{2^2+(-1)^2}}=\frac{12\sqrt{5}}{5}\)
Lời giải:
$x=-2+t; y=1+2t$
$\Rightarrow 2x-y=2(-2+t)-(1+2t)=-5$
$\Leftrightarrow 2x-y+5=0$
Khoảng cách từ điểm $M$ đến $(\Delta)$ là:
\(\frac{|2.3-(-1)+5|}{\sqrt{2^2+(-1)^2}}=\frac{12\sqrt{5}}{5}\)
1) Tính khoảng cách từ điểm M đến đường thẳng d, với:
M(3,5); (d): x + y + 1 =0
M(2,3); (d): {x-2t, y = 2 + 3t
M(2,-3); (d): (x - 2)/2 = ( y + 1)/3
2) Viết phưởng trình đường thẳng d song song với đường thẳng △: 2x - y +3 =0 và cách △ một khoảng bằng căn 5
Trong không gian Oxyz, cho đường thẳng Δ: x = 1 + 2, y = 2 + t, z = 1 + 2t và điểm M(2; 1; 4). Khoảng cách từ M đến đường thẳng Δ là:
A. 5
B. 3
C. 5
D. Đáp án khác
Câu 1: Tìm tập hợp các điểm cách đều 2 đường thẳng:
Delta3 :3x + 4 y + 6 = 0
Delta4 :5x -10 = 0 ( phân giác góc tạo bởi D3 và D4 )
Câu 2: Cho hai đường thẳng:
Delta : 3x + 2y - 1 = 0 và d : 5x - 3y+2=0
1) Tính khoảng cách từ A(5 ;4) đến đường thẳng Delta
2) Viết phương trình các đường phân giác của góc tạo bởi hai đường thẳng trên.
3) Tìm điểm M thuộc Delta sao cho khoảng cách từ M đến d bằng 5.
4) Tìm điểm N thuộc đường thẳng (D1) : x - 2y = 0 bằng hai lần khoảng cách từ N đến d .
Trong mặt phẳng Oxy, cho đường tròn (C): x²+y² -2x +4y=0 và đường thẳng delta: x+2y+7=0. Tìm tọa độ điểm M€(C) sao cho khoảng cách từ điểm M đến đường thẳng delta lớn nhất.
Trong mặt phẳng Oxy, cho đường tròn (C): \(\left(x-1\right)^2+y^2=2\) và đường thẳng \(\Delta:x-y+4=0\) gọi \(M\left(x_0;y_0\right)\) \(\in\) (C) là điểm có khoảng cách từ m tới (\(\Delta\)) lớn nhất. Tính \(x_0+y_0\)
Cho 3 đường thẳng (d1) x=1-2t y=1+t, (d2): 3x+4y-4=0, (d3): 4x-3y+2=0 . Tìm điểm M nằm trên (d1) cách đều (d2) và d3
Khoảng cách từ điểm M( 2;0) đến đường thẳng x = 1 + 3 t y = 2 + 4 t là:
A. 2
B. 2/5
C. 10/√5
D. √5/2
Điểm M thuộc đường thẳng d : x = - 1 - t y = 2 t , t ∈ ℝ và cách điểm N(2;0) một khoảng ngắn nhất có tọa độ là:
A. ( - 3 5 ; - 4 5 )
B. ( - 2 5 ; - 6 5 )
C. ( - 1 ; 0 )
D. ( - 2 ; 2 )
Khoảng cách từ điểm M( 2; 3) đến đường thẳng ∆: 3x- 4y+ 1= 0 là:
A. 1
B.2
C. 1/2
D. 3