nếu 0<a<b<c<d<e<f
(a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) thì x=...
a) Tính D= {1+(1+2)+(1+2+3)+...+(1+2+3+...+98)} / {1.98+2.97+3.96+...+98.1}.
b)* Chứng minh rằng biểu thức E có giá trị bằng 1/2
E= (1.98+2.97+3.96+...+98.1) / (1.2+2.3+3.4+...+98.99)
trong mặt phẳng Oxy cho tam giác ABC vuông tại B AB=2BC gọi D là trung điểm của AB,E là một điểm trên AC sc AC=3AE pt CD là x-3y+1=0 và E(\(\frac{16}{3}\),1) tìm tọa độ A B C
Cho hàm số y=f(x) xác định và liên tục trên [1;e] thỏa mãn xf ' ( x ) = x [ f ( x ) ] 2 + 3 f ( x ) + 4 x và f(1) = -3. Tính f(e).
A. 5 2 e
B. - 5 2
C. - 5 2 e
D. 5 2
Cho
\(\frac{A+C+E}{3}=40--\left(1\right)\)
\(\frac{A+B+D}{3}=28--\left(2\right)\)
\(\frac{B+C+D+E}{3}=33--\left(3\right)\)
\(A=?\)
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1, Cho tg ABC có A<90 . Gọi I là TĐ của cạnh AC . Trên tia đối của tia IB lấy điểm D/ IB=ID. Nối C với D a, CMR tg AIB= tg CID b, Gọi M là Tđ Của BC, N là TĐ của AD CMR I là TĐ cuar MN c, Cmr góc AIB<BIC Tìm đk tg ABC để AC vuông CD
2, Cho tam giác ABC gọi M là TĐ của cạnh BC . Trên tia đối của MA lấy điểm E sao cho ME=MA CMR: a,AC=BE và AD // BE b, Gọi I là 1 điểm của bk AC, Gọi K là 1 điểm trên BE / AI=EK. CMR 3 điểm I,M,K thẳng hàng c, Từ EH vg BC tại H biết HBE=50 MEB=25 Tính HEM và BME
Tính tổng:a, E=1+3+6+...+4950
b, D=2+6+12+...+9900
1.Trên mp có 11 đường thẳng đôi 1 ko song song C/m:có 2 đường thẳng tạo với nhau 1 góc <17 độ
2.Cho (O) đường kính AB.Lấy C ngoài đoạn thẳng AB (C nằm trên đường thẳng AB).Kẻ 2 tiếp tuyến CE và CF. AB cắt EF tại I, kẻ cát tuyến CMN. C/m: góc AIM= góc BIN
3.Cho tam giác ABC ngoại tiếp đường tròn (O).Biết D,E,F là các tiếp điểm , D thuộc AC, E thuộc AB, F thuộc BC Biết OE=r, AB=c, AC=b, BC=a
C/m:a) (a+b+c)*r=2S ( S là diện tích tam giác ABC)
b)nếu (a+b+c)(a+b-c)=4S thì tam giác ABC vuông
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABE và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD