Cho a,b,c là các số nguyên.Tính giá trị của phân thức
\(\frac{a+b}{a-b}\cdot\frac{b+c}{b-c}+\frac{b+c}{b-c}\cdot\frac{c+a}{c-a}+\frac{c+a}{c-a}\cdot\frac{a+b}{a-b}\)
Tính \(y=\frac{a\cdot b}{\left(b-c\right)\cdot\left(c-a\right)}+\frac{b\cdot c}{\left(c-a\right)\cdot\left(a-b\right)}+\frac{a\cdot c}{\left(a-b\right)\cdot\left(b-c\right)}\)
Cho a, b, c là 3 số thực khác nhau.CMR:
\(\frac{a+b}{a-b}\cdot\frac{b+c}{b-c}+\frac{a+c}{c-a}\cdot\frac{b+c}{b-c}+\frac{a+c}{c-a}\cdot\frac{a+b}{a-b}=-1\)
Cho a,b,c là 3 số khác 0 thỏa mãn a+b+c=0 . Tính giá trị biểu thức P = \(\frac{a}{c}\)\(\cdot\)\(\frac{a^2-b^2-c^2}{b^2-c^2-a^2}\cdot\frac{C^2+a^2-b^2}{c^2-a^2-b^2}\)
Giúp mk nhanh vs !!!
Cho \(a,b,c>0\). Chứng minh rằng: \(\frac{a\cdot b}{c}+\frac{b\cdot c}{a}+\frac{c\cdot a}{b}\ge a+b+c\)
Cho a,b,c đôi một khác nhau
Tính P=\(\frac{a^2}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\cdot\left(c-a\right)}\)
\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\cdot\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}\cdot\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
Rút gọn
\(M=\frac{2}{a-b}+\frac{2}{bc}+\frac{2}{c-a}+\frac{\left(a+b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\cdot\left(b-c\right)\cdot\left(c-a\right)}\)
Rút gọn các phân thức sau
a) \(A=\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a\cdot b^2-a\cdot c^2-b^3+b\cdot c^2}\)
b) \(B=\frac{x^3+y^3+z^3-3\cdot x\cdot y\cdot z}{\left(x+y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)