Tính giá trị của biểu thức:
M = \(\frac{mx^2+ny^2+pz^2}{np\left(y-z\right)^2+pm\left(z-x\right)^2+mn\left(x-y\right)^2}\)
với điều kiện mx+ny+pz = 0; m, n, p là các hằng số.
Tính giá trị của biểu thức:
M = \(\frac{mx^2+ny^2+pz^2}{np\left(y-z\right)^2+pm\left(z-x\right)^2+mn\left(x-y\right)^2}\)
với điều kiện mx+ny+pz = 0; m, n, p là các hằng số.
Giúp mik vs. Ai giải đug mik t cho 3 cái, mik hứa!
Cho các số thực dương \(x,y,z\)thỏa mãn điều kiện \(x+y+z=1\) .Tìm giá trị nhỏ nhất của biểu thức:
\(F=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
Cho x,y,z là 3 số khác 0 thỏa mãn điều kiện x3+y3+z3=3xyz và x+y+z=0.Tính giá trị của biểu thức:
\(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
cho x y z là các số thực thỏa mãn điều kiện x+y+z=0 và xyz khác 0
Rút gọn phân thức B=\(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{x^3+y^3+z^3}\)
CMR giá trị của bt sau ko phụ thuộc vào giá trị của biến:
A=\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
với \(y^2-z=b;x^2-y=a;z^2-x=c\)trong đó a,b,c là các hằng số
Cho các số thực x,y,z đôi 1 khác nhau và x+y+z=0 tính giá trị
P=\(\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}\)
Cho các số thực x, y, z \(\in\left[0;12\right]\) thỏa mãn điều kiện:
\(xyz=\left(12-x\right)^2\left(12-y\right)^2\left(12-z\right)^2\)
Tìm giá trị lớn nhất của A = xyz.
À mà tiện thể cho em hỏi kí hiệu x, y, z \(\in\left[0;12\right]\) nghĩa là \(0\le x,y,z\le12\) hay sao mn?