Ta có: \(A=3\cdot\dfrac{1}{1\cdot2}-5\cdot\dfrac{1}{2\cdot3}+7\cdot\dfrac{1}{3\cdot4}-...+15\cdot\dfrac{1}{7\cdot8}-17\cdot\dfrac{1}{8\cdot9}\)
\(=\dfrac{3}{1\cdot2}-\dfrac{5}{2\cdot3}+\dfrac{7}{3\cdot4}-...+\dfrac{15}{7\cdot8}-\dfrac{17}{8\cdot9}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-...+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}=\dfrac{8}{9}\)