Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bé Dâu

Tính giá trị của biểu thức:

a) 27x3 + 27x2 + 9x + 1 tại x = 13

b) x3 - 15x2 + 75x - 125 tại x = 35

c) x3 + 12x2 + 48x + 65 tại x = 6

Khôi Bùi
10 tháng 9 2018 lúc 20:16

a ) \(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3\left(3x\right)^2+3.3x+1\)

\(=\left(3x+1\right)^3\)

Thay \(x=13\) vào b/t trên ta được :

\(\left(3.13+1\right)^3=40^3=64000\)

Vậy g/t b/t trên là : \(64000\) tại \(x=13\)

b ) \(x^3-15x^2+75x-125\)

\(=x^3-3x^2.5+3x.5^2-5^3\)

\(=\left(x-5\right)^3\)

Thay \(x=35\) vào b/t trên ta được :

\(\left(35-5\right)^3=30^3=27000\)

Vậy g/t b/t trên là : \(27000\Leftrightarrow x=35\)

c ) \(x^3+12x^2+48x+65\)

\(=x^3+3x^2.4+3x.4^2+4^3+1\)

\(=\left(x+4\right)^3+1\)

Thay \(x=6\) vào b/t trên , ta được :

\(\left(6+4\right)^3+1=10^3+1=1000+1=1001\)

Vậy g/t b/t trên là : \(1001\) tại \(x=6\)

Phong Thần
10 tháng 9 2018 lúc 20:43

a) \(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3.\left(3x\right)^2+3.3x+1^3\)

\(=\left(3x+1\right)^3\)

Thay x = 13, ta được:

\(=\left(3.13+1\right)^3\)

\(=40^3\)

\(=64000\)

b) \(x^3-15x^2+75x-125\)

\(=x^3-3.x^2.5+3.x.5^2-5^3\)

\(=\left(x-5\right)^3\)

Thay x = 35, ta được:

\(=\left(35-5\right)^3\)

\(=30^3\)

\(=27000\)

c) \(x^3+12x^2+48x+65\)

\(=x^3+5x^2+7x^2+35x+13x+65\)

\(=x^2\left(x+5\right)+7x\left(x+5\right)+13\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2+7x+13\right)\)

Thay x = 6, ta được:

\(=\left(6+5\right)\left(6^2+7.6+13\right)\)

\(=1001\)


Các câu hỏi tương tự
Đào Phúc Việt
Xem chi tiết
Đỗ Thuỳ Linh
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Đào Phúc Việt
Xem chi tiết
Diệp Băng Nhi
Xem chi tiết
Nguyên Hoàng
Xem chi tiết
Jeon Jungkook
Xem chi tiết
Ú Bé Heo (ARMY BLINK)
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết