\(2a^2+2b^2=5ab\)
<=>\(2a^2-5ab+2b^2=0\)
<=>\(2\left(a^2-\frac{5}{2}ab+b^2\right)=0\) <=> \(a^2-\frac{5}{2}ab+b^2=0\)
<=>\(a^2-2.a.\frac{5}{4}.b+b^2=0\)
<=>\(\left(a-\frac{5}{4}b\right)^2=0\) <=> \(a-\frac{5}{4}b=0\) <=> \(a=\frac{5}{4}b\)
Ta có: \(M=\frac{a+b}{a-b}=\frac{\frac{5}{4}b+b}{\frac{5}{4}b-b}=\frac{\left(\frac{5}{4}+1\right).b}{\left(\frac{5}{4}-1\right).b}=\frac{\frac{9}{4}b}{\frac{1}{4}b}=\frac{\frac{9}{4}}{\frac{1}{4}}=9\)
Vậy M=9
(*) bài này có áp dụng HĐT:\(\left(a-b\right)^2=a^2-2ab+b^2\)