Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thanh Huyền

Tính giá trị biểu thức
\(M=\frac{a+b}{a-b}\) với b > a > 0 và \(\frac{ }{ }2a^2+2b^2=5ab\)

Hoàng Phúc
8 tháng 5 2016 lúc 8:41

\(2a^2+2b^2=5ab\)

<=>\(2a^2-5ab+2b^2=0\)

<=>\(2\left(a^2-\frac{5}{2}ab+b^2\right)=0\) <=> \(a^2-\frac{5}{2}ab+b^2=0\)

<=>\(a^2-2.a.\frac{5}{4}.b+b^2=0\)

<=>\(\left(a-\frac{5}{4}b\right)^2=0\) <=> \(a-\frac{5}{4}b=0\) <=> \(a=\frac{5}{4}b\)

Ta có: \(M=\frac{a+b}{a-b}=\frac{\frac{5}{4}b+b}{\frac{5}{4}b-b}=\frac{\left(\frac{5}{4}+1\right).b}{\left(\frac{5}{4}-1\right).b}=\frac{\frac{9}{4}b}{\frac{1}{4}b}=\frac{\frac{9}{4}}{\frac{1}{4}}=9\)

Vậy M=9

Hoàng Phúc
8 tháng 5 2016 lúc 8:47

(*) bài này có áp dụng HĐT:\(\left(a-b\right)^2=a^2-2ab+b^2\)


Các câu hỏi tương tự
Hoàng Phúc
Xem chi tiết
Nguyễn Trung Sơn
Xem chi tiết
Dương Đình Hưởng
Xem chi tiết
Đặng Thai Mai
Xem chi tiết
Đỗ Kiều Giang
Xem chi tiết
nguyễn quốc khánh
Xem chi tiết
lion messi
Xem chi tiết
Evil
Xem chi tiết
Xem chi tiết