Ta có : \(\sqrt{2008+2\sqrt{2007}}=\sqrt{2007+2\sqrt{2007}+1}=\sqrt{\left(\sqrt{2007}+1\right)^2}=\sqrt{2007}+1\)
\(\sqrt{\left(1-\sqrt{2007}\right)^2}=\sqrt{2007}-1\)
Suy ra \(C=2\sqrt{2007}\)
Ta có : \(\sqrt{2008+2\sqrt{2007}}=\sqrt{2007+2\sqrt{2007}+1}=\sqrt{\left(\sqrt{2007}+1\right)^2}=\sqrt{2007}+1\)
\(\sqrt{\left(1-\sqrt{2007}\right)^2}=\sqrt{2007}-1\)
Suy ra \(C=2\sqrt{2007}\)
So sánh: \(\left(2009+\sqrt{2007}\right)\left(2007+\sqrt{2007}\right)\&\left(2008+\sqrt{2007}\right)^2\)
\(P(x)=ax^2+bx+c, \ a \ne 0\)
Chứng minh rằng \(\forall m \in \mathbb{R}\) ta có :
\(P(m) = P\left( { - m - \dfrac{b}{a}} \right).\)
Từ đó tính giá trị biểu thức \((\sqrt {2009} - \sqrt {2008} )x^2 - (\sqrt 2 008 - \sqrt {2007} )x + 6\sqrt {2008} - 2\sqrt {2007}\)
với \(x = \dfrac{2 \sqrt{2009}- 3\sqrt{2008}+ \sqrt{2007}}{ \sqrt{2008}- \sqrt{2009}}\)
1. tích các nghiệm cua phương trình(x-2009)(x-2008)(x-2007)...(x-1)x(x+1)...(x+2010)=0
2.cho abc=2008 . khi do gia tri cua bieu thuc
\(\frac{2008a}{\left(ab+2008a+2008\right)}+\frac{b}{bc+b+2008}+\frac{c}{ac+c+1}=0\)
3.gia tri cua bieu thuc Q=(3+1)(32+1)(34+1)...(33994+1)
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A
tinh gia tri bieu thuc a = \(\sqrt{4+\sqrt[3]{8+\frac{2}{3}+3^{10}\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}}}\)
Giải phương trình \(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\)
cho x+y+z=1, x2+y2+z2=1, x3+y3+z3=1
Tinh gia tri bieu thuc: P = x2007+ y2007+ z2007
Tinh giá trị biểu thuc \(A=x^2+2016-2017\)
Biết \(x=\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+3}}\)
tinh gia tri cua bieu thuc sau roi ghi ket qua vao o
A=\(\sqrt[5]{\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}}\)