\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9\times\frac{99}{100}\)
\(=\frac{891}{100}\)
A=9.(1/1.2 +1/2.3 +1/3.4+...+1/98.99 +1/99.100
A=9.(1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
A=9.(1-1/100)
A=9.99/100
A=891/100
A:9=1/1.2+1/2.3+1/3.4+..........+1/98.99+1/99.100
=1/1-1/2+1/2-1/3+1/3-1/4+........+1/99-1/100
=1-1/100
=99/100
=>A=99/100.9
=891/100
=
\(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}=\frac{891}{100}\)