\(a)245^2+490\cdot54+54^2-199^2\\=(245^2+2\cdot245\cdot54+54^2)-199^2\\=(245+54)^2-199^2\\=299^2-199^2\\=(299-199)(299+199)\\=100\cdot498\\=49800\\---\\b)356^2-356\cdot246+123^2-133^2\\=(356^2-2\cdot356\cdot123+123^2)-133^2\\=(356-123)^2-133^2\\=233^2-133^2\\=(233-133)(233+133)\\=100\cdot366\\=36600\)
\(---\)
\(c)468^2-412^2-110\cdot412-55^2\\=468^2-(412^2+110\cdot412+55^2)\\=468^2-(412^2+2\cdot412\cdot55+55^2)\\=468^2-(412+55)^2\\=468^2-467^2\\=(468-467)(468+467)\\=1\cdot935\\=935\\---\)
\(d)615^2+250\cdot615+125^2-540^2\\=(615^2+2\cdot615\cdot125+125^2)-540^2\\=(615+125)^2-540^2\\=740^2-540^2\\=(740-540)(740+540)\\=200\cdot1280\\=256000\)
#\(Toru\)